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ABSTRACT 

Item Response Theory (IRT) models have been widely used to analyse test data and develop 

IRT-based tests. An important requirement in applying IRT models is the stability and accuracy 

of model parameters. Substantial research work has been undertaken in the past to study the 

effect of sample size on the estimation of IRT model parameters using simulations. One of the 

limitations of using pure simulations to study the effect of sample size on IRT item parameter 

estimation is that the model assumptions are strictly met, which is seldom true for operational 

test data. However, data from operational tests do not normally strictly meet the model 

assumptions. It was therefore in the interest of this study to use real data in comparing item 

parameter estimates from different samples sizes so that the possible minimum sample size could 

be determined for application in IRT dichotomous models. The study compared three sample 

sizes of: 250,500 and 1000 obtained   by administering a 60 item multiple choice test to 1750 

MSCE students across Zomba City. The analysis was done using ANOVA in SPSS. At 95% 

confidence interval the results showed that the item parameter estimates obtained from the three 

independent samples were statistically the same. This lead to the conclusion that a sample of size 

250 can be employed in IRT’s 2PLM and 1PLM to obtain item parameter estimates that are 

statistically equivalent to those from larger samples. 

 

 

 

 



vi 
 

 

TABLE OF CONTENTS 

TABLE                                                                                                                                   PAGE 

DECLARATION…………………………………………………………………………………i 

CERTIFICATE OF APPROVAL ................................................................................................... ii 

DEDICATION ............................................................................................................................... iii 

ACKNOWLEDGEMENTS .......................................................................................................... .iv 

ABSTRACT…………………………………………………………………………………….....v 

TABLE OF CONTENTS…………………………………………………………………...…….vi 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES .......................................................................................................................... x 

LIST OF ACRONYMS ................................................................................................................. xi 

CHAPTER ONE: INTRODUCTION TO THE PROBLEM 

1.1 Background to the problem……………………………………………………………………1 

1.2 Statement of the problem .......................................................................................................... 2 

1.3 Purpose of the study .................................................................................................................. 3 

1.4 Research questions .................................................................................................................... 3 

1.5 Significance of the study ........................................................................................................... 4 

1.6 Operation definition .................................................................................................................. 4 

CHAPTER TWO : REVIEW OF RELATED LITERATURE 

2.0 Chapter overview ...................................................................................................................... 6 

2.1 Brieth introduction to item response theory models ................................................................. 6 

2.1.1 IRT dichotomous models ................................................................................................... 7 

2.1.2 the one parameter logistic models ...................................................................................... 8 

2.1.3 the two parameter logistic models ...................................................................................... 9 

2.1.4 the three parameter logistic models .................................................................................. 10 

2.2 Irt parameter estimastion methods .......................................................................................... 10 



vii 
 

2.2.1 Joint maximum likelihood method  .................................................................................. 11 

2.2.2 Marginal maximum likelihood method ............................................................................ 13 

2.2.3 Bayesian methods ............................................................................................................. 15 

2.3 Invariance property of item response theory .......................................................................... 16 

2.4 Assumptions of Irt................................................................................................................... 17 

2.4.1 Unidimensionality assumption ......................................................................................... 17 

2.4.2 Local independence assumption....................................................................................... 19 

2.5 Sample size requirements for irt models ................................................................................. 19 

2.6 Sample size versus estimation methods .................................................................................. 20 

2.7 Samples versus modified models ............................................................................................ 21 

2.8 Sample size versus optimal examinees ................................................................................... 27 

2.9 Adequate sample size…………………………………...……………………………………30 

CHAPTER THREE : RESEARCH DESIGN AND METHODOLOGY OF THE STUDY 

3.0 Chapter overview .................................................................................................................... 33 

3.1 Design of the study ................................................................................................................. 33 

3.2 Sampling ................................................................................................................................. 33 

3.2.1 Selection of schools .......................................................................................................... 34 

3.2.2 Selection of examinees random samples .......................................................................... 34 

3.3 Data instruments ..................................................................................................................... 35 

3.4 Validity and reliability of the questionaire` ............................................................................ 35 

3.5 Data collection ........................................................................................................................ 36 

3.6 Data analysis ........................................................................................................................... 36 

3.7 Ethical considerations ............................................................................................................. 36 

CHAPER FOUR: RESULTS OF THE STUDY 

4.0 Chapter overview .................................................................................................................... 38 

4.1 Preliminary results of the study .............................................................................................. 38 

4.1.2 Model data fit analysis ..................................................................................................... 39 

4.1.3 Model assumptions of unidimensionality and local independence .................................. 39 



viii 
 

4.1.5 Graphic analysis of model data fit standardized residuals ............................................... 40 

4.1.6 Frequency distribution for standardized residuals for real and simulated data ................ 40 

4.1.7 Standardised item residual plot ........................................................................................ 42 

4.1.8 Chi-square statistics.......................................................................................................... 44 

     4.1.9 Predicted score distribution……………………………………………………………..44 

4.1.9.1 Preliminary results summary ......................................................................................... 46 

4.2 Main findings of the study ...................................................................................................... 46 

4.2.1 Item parameter estimates .................................................................................................. 46 

4.2.2 Graphical comparison of item parameter estimate ........................................................... 50 

4.2.3 Graphical assessment of item discrimination parameter estimates .................................. 50 

4.2.4 Graphical assessment of item difficulty parameter estimates .......................................... 53 

4.3 Comparison of item parameters in anova ............................................................................... 50 

4.3.1 Anova results for 2pl item difficulty parameter ............................................................... 56 

4.3.2 Anova results for item dscrimination parameter estimates .............................................. 59 

4.3.3 Anova results for person ability parameter estimates ...................................................... 61 

CHAPTER FIVE: DISCUSSION, CONCLUNSIONS, IMPLICATIONS AND 

RECOMMENDATIONS 

5.0 Chapter Over View ................................................................................................................. 65 

5.1 Discussion ............................................................................................................................... 65 

5.2 Relationship Of The Findings To Prior Research ................................................................... 67 

5.3 Implications For Practice And Policy ..................................................................................... 68 

5.4 Limitation Of The Current Study ............................................................................................ 70 

5.5 Recommendations ................................................................................................................... 70 

References ..................................................................................................................................... 71 

 Appendices………………………………………………………………………………………79 

 

 

 



ix 
 

LIST OF FIGURES 

Figure1: 3 PLM ICC.……………………………………………………………………………...8 

Figure2: Scree plot for 1000 sample size data set………………………………………………..40 

Figure3: SR distribution for 1000 sample size data set 1pl model………………………………41 

Figure4: SR distribution for 1000sample size data set 2pl model……………………………….41 

Figure5: SR distribution for 250 sample size data set 1pl model………………………………..42 

Figure6: SR distribution for 250 sample size data set 2pl model………………………………..42 

Figure7: SR distribution for 500 sample size data set 1pl model………………………………..42 

Figure8: SR distribution for 500 sample size data set 2pl model………………………………..42 

Figure9: SRs for 1000 sample size data set 1pl model…………………………………………..43 

Figure10: SRs for 1000 sample size data set 2pl model…………………………………………43 

Figure11: Score cumulative distribution for 1000 sample size data set 1pl model……………...45 

Figure12: score cumulative distribution for 1000 sample size data set 2pl model………………45 

Figure13: Item discrimination parameter estimates from 2pl model item 1 to 10……………….50 

Figure15: Item discrimination parameter estimates from 2pl model item 11 to 20……………...51 

Figure16: Item discrimination parameter estimates from 2pl model item 21 to 30……………...52 

Figure17: Item discrimination parameter estimates from 2pl model item 31 to 40….…………..52 

Figure18: Item discrimination parameter estimates from 2pl model item 41 to 50 ……………..52 

Figure19: Item difficulty parameter estimates from 2pl model item 1 to 10………………….…53 

Figure20: Item difficulty parameter estimates from 2pl model item 11 to 20……….………......54 

Figure21: Item difficulty parameter estimates from 2pl model item 21 to 30………...…………54  

Figure22: Item difficulty parameter estimates from 2pl model item31 to 40…...……………….55 

Figure23: Item difficulty parameter estimates from 2pl model item 41 to 50……………….......55 

Figure24: Item difficulty parameter estimates from 2pl model item 51 to 60……...……………56 



x 
 

LIST OF TABLES 
 

Table 4.1: Item Difficulty Parameter Estimates for Sample Size 250 .......................................... 47 

Table4.2: Item Difficulty Parameter Estimates for Sample Size 500 ........................................... 47 

Table4.3: Item Difficulty Parameter Estimates for Sample Size 100 ........................................... 48 

Table4.4: Item Discrimination Parameter Estimates for Sample Size 250 ................................... 48 

Table4.5: Item Discrimination Parameter Estimates for Sample Size 500 ................................... 49 

Table4.6: Item Discrimination Parameter Estimates for Sample Size 1000 ................................. 49 

Table4.7: Descriptives for difficulty parameter estimates ............................................................ 57 

Table4.8: ANOVA Statistics for difficulty parameter estimates……………..................................58 

Table4.9: Descriptive Statistics for Item Discrimination Parameter Estimates  ........................... 59 

Table4.10: ANOVA Statistics for Discrimination Parameter Estimates  ..................................... 60 

Table4.11: Descriptive Statistics for Examinee Ability Parameter Estimates  ............................. 62 

Table4.12: ANOVA Examinee Ability  Parameter Estimates  ..................................................... 62 

 

 

 
 

 

 

 

 

 

 

 

 



xi 
 

LIST OF APPENDICES 

APPENDIX A: SRs for 1plm for sample of 250………………………………………………...79 

APPENDIX A: SRs for 1plm for sample of 500………………………………………………...85 

APPENDIX A: SRs for 1plm for sample of 1000…………………………………………….....90 

APPENDIX A: SRs for 2plm for sample of 250 ………………………………………………..95 

APPENDIX A: SRs for 1plm for sample of 500………………………………………….........104 

APPENDIX A: SRs for 1plm for sample of 1000……………………………………………...110 

APPENDIXC: Instrument for the study………………………………………………………..101 

APPENDIXD: Letter to the executive director of (MANEB) …………………………………123 

APPENDIXE: Letter to the South East Education Division Manager…………………………124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF ACRONYMS AND ABBREVIATIONS 

ANOVA 

CDSS 

CFA 

CTT 

EFA 

1PLM 

2PLM 

3PLM 

ICC 

IRF 

IRT 

MSCE 

MANEB 

PCA 

RMSEs 

SRs 

SPSS 

TOEFL 

 

Analysis of Variance  

Community Day Secondary School 

Confirmatory Factor Analysis 

Classical Test Theory 

Exploratory Factor Analysis 

One Parameter Logistic Model  

Two Parameter Logistic Model 

Three One Parameter Logistic Model 

Item Characteristic Curve 

Item Response Function 

Item Response Theory 

Malawi School Certificate National Examination  

Malawi National Examination Board 

Principal Component Analysis 

Root Mean Squared Errors 

 Standardized Residuals 

Statistical Package for  Social Sciences 

Test of English as a Foreign Language  

 

 

 



1 
 

 

CHAPTER ONE 

 

INTRODUCTION TO THE PROBLEM 

 

1.1 Background to the problem   

In recent decades, item response theory (IRT) models have been growing in popularity. 

The common IRT dichotomous models include (Rasch, 1PL, 2PL and 3PL).These models 

are increasingly being used in assessment programs due to the following advantages: 

firstly, they provide away to model the probability of giving a correct answer on an item 

based on the underlying ability of the examinee and item parameters.   

Secondly, they provide information on item level and the leading property of invariance 

which stipulates that values of IRT item parameters ought to be identical for separate 

groups of examinees and through different measurement conditions (Rupp & Zumbo, 

2006). 

Despite being promising and increasingly growing in application, Item Response Theory 

(IRT) has one major setback which poses as a limitation in its application in assessment, 

in that it requires large samples to obtain accurate person and item parameter estimates. 

The problem with larges sample sizes is that they are costly, difficult or undesirable to 

obtain and they presents test security through item exposure problems (Wainer & Eignor, 

2000). 
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In attempt to address the problem of large sample sizes, studies have been undertaken to 

determine the minimum possible sample size that can be employed to obtain accurate 

person and item parameter estimates. As early as 1968, Lord suggested using test lengths 

of at least 50 items and sample sizes of at least 1,000 when using JML to estimate 3PL 

model parameters in order to control the sampling error of the discrimination parameter 

estimates. Ree and Jensen (1983) examined several combinations of calibration and 

equating sample sizes. They suggested a minimum sample size of 500, but recommended 

administering test items “to the largest samples available” (p. 145). Results from studies 

generally indicate that the magnitude of the variation between sample estimates decreases 

with increasing sample size. However, the majority of the studies focused on the use of 

simulated data. One of the limitations of using pure simulations to study the effect of 

sample size on IRT item parameter estimation is that the model assumptions are strictly 

met, which is seldomly true for operational test data. It was therefore in the interest of 

this study to use real data in comparing item parameter estimates from different samples 

sizes so that the possible minimum sample size could be determined for application in 

IRT dichotomous models. 

1.2 Statement of the problem 

The dichotomous IRT models are flexible and useful way to score assessment data. 

However, their uses are limited due to reliance on large samples. Effective methods to 

improve the accuracy of IRT parameter estimation could result in an expansion of the 

models' use into areas of assessment in which they are currently unsuitable due to sample 

size limitations.  
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However many studies in this area have relied on the use of simulated response data to 

evaluate the extent to which sample size affects the accuracy and stability of IRT models 

in estimating item parameters. For example, Hambleton and Cook (1983) simulated tests 

of 10, 20, and 80 items with sample sizes of 50, 200, and 1000 in order to determine the 

effect of sample size on the standard errors of ability estimation curves. Ree and Jensen 

(1983) examined several combinations of calibration and equating sample sizes. They 

suggested a minimum sample size of 500, but recommended administering test items “to 

the largest samples available” (p. 145).   

1.3 Purpose of the study 

The purpose of this study was to find out whether item parameter estimates across 

different independent samples sizes of persons in IRT dichotomous models are 

statistically comparable using real data. 

1.4 Research questions 

The questions which the study was concerned with were stated. Answers to each of these 

questions were sought through testing of the null hypothesis derived from each of the 

questions: 

1. Which IRT model fits the data? 

2. How comparable are the item difficulty parameter estimates from different 

samples? 

3. How comparable are the item discrimination parameter estimates from different 

samples? 
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4. How comparable are the examinees’ ability parameter estimates from different 

samples? 

5. To what extent are the item and person parameters from different samples 

different? 

1.5 Significance of the study 

As it was envisaged, this study has determined and established the minimum sample size 

which could be employed when generating item parameter estimates in dichotomous IRT 

models. The equivalence of parameter estimates across different samples has also been 

determined based on IRT frame works. The findings of this research study have added to 

the empirical knowledge on the influence of sample size on item parameter estimates 

based on IRT theoretical framework. Secondly, these findings could be used to reduce 

pretesting costs, because smaller samples would be sufficient. The findings will help 

improve test security by reducing item exposure (fewer examinees need to see each item 

to estimate the item parameters accurately). Finally, practitioners could use the flexible 

2PL model in situations where populations are small or where a smaller calibration 

sample is desired. 

1.6 Operational definition of terms 

Item Response Theory (IRT): Hambleton and Jones (1993) state that, “Item response 

theory is a general statistical theory about examinee item and test performance and how 

performance relates to the abilities that are measured by the items in the test. 
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Three Parameter logistic model (3PLM): It is an IRT model with three parameters (a, b 

and c) parameters where “a” is the discrimination parameter, “b” is difficult and “c” the 

guessing parameter. 

Two Parameter Logistic Model (2PLM):  It is an IRT model with two parameters (a 

and b) parameters 

One Parameter Logistic Model (1PLM): It is an IRT model with one parameter (a) 

parameters 

ANOVA: Analysis of Variance  

Dichotomous Items: These are items that are scored wrong or correct e.g. multiple 

choice questions. 

Polytomous Items: A polytomous item is one that has more than two score categories    

     

Principal Components Analysis (PCA):  It is a mathematical procedure that transforms 

a number of (possibly) correlated variables into a (smaller) number of uncorrelated 

variables called principal components. 

 

Classical Test Theory: It is a theory that describes test scores by introducing three 

notions; test score (i.e., observed score), true score, and error score. All together the 

equation is as follows: X (observed score) = T (true score) + E (error score).  At any time 

there are two unknowns in the equation for the examinee, thus, some assumptions must 

be made. First, true scores and error scores are uncorrelated; second, the average error 

score in the population is zero, and third; error scores in parallel tests are uncorrelated. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE AND RESEARCH 

2.0 Chapter overview 

The literature chapter begins with a brief introduction to IRT models, the property of item 

parameter invariance, model assumptions, followed by a summary of some of the most 

common IRT item parameter estimation methods, sample size requirement and the effects 

of different models on parameter estimation with small samples.   

2.1 Brief introduction to IRT models 

Much has been written about the theoretical foundations, development, and application of 

IRT (Hambleton et al.. 1991; Yen & Fitzpatrick, 2006; de Ayala, 2009). The intent of this 

section is to provide a concise introduction to IRT dichotomous models and a brief 

description of its benefits and limitations. 
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2.1.1 IRT dichotomous models 

At its core, IRT is a group of statistical models used to analyse assessment data. These 

models, which focus on individual items rather than intact assessments, employ nonlinear 

functions to relate the properties of an item (e.g., difficulty, discrimination) to the 

probability of an examinee providing a particular response (e.g., correct, incorrect). 

Mathematically, this can be defined as 

                 

                                                           𝑃𝐼(𝜃) = 𝑃𝐼(𝑋𝑖) = 𝑥𝑖[𝜃], [𝛿𝑖]                          Equation1 

This equation, or item response function (IRF), indicates that the probability of an 

examinee responding xi on item Xi depends on one or more examinee ability parameters, 

{𝜃},and one or more item parameters, {𝛿𝑖}. This equation illustrates the primary benefits 

of IRT: Because the probability of a given response is conditional on both the item and 

examinee characteristics, estimates of item parameters are (examinee) sample 

independent, and person estimates are independent of items (Hambleton, Swaminathan, 

& Rogers, 1991; Yen & Fitzpatrick, 2006). IRFs are displayed graphically using item 

characteristic curves (Yen & Fitzpatrick, 2006). 
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Figure 1:   3PLM ICC    Adapted from Harris (1989). 

 

Equation 1 is very general and does not specify that the item responses be either 

dichotomous or polytomous. This study focuses on an IRT model for dichotomous 

responses. The responses for dichotomous models are typically coded to either a zero (for 

an incorrect response) or one (for a correct response). Three of the most common models 

for dichotomous responses are discussed in more detail below. 

2.1.2 The one-parameter logistic model 

     Equation 2                         
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This equation indicates that the probability of a correct response is dependent on the 

ability of the examinee (θ) and the item parameter bi, which is commonly referred to as 

item difficulty. Mathematically, the item difficulty corresponds to the ability level at the 

point of inflection of the ICC. Thought of another way, an examinee whose ability is 

equal to the item difficulty will have equal probabilities of getting the item correct or 

incorrect. When using the 1PL model, the shape of the ICCs is the same for all items; the 

ICCs merely shift up or down the θ scale depending on the item difficulty value 

(Hambleton, Swaminathan, & Rogers, 1991). 

 

2.1.3 The two-parameter logistic model 

      An extension of the 1PL model is the two-parameter logistic (2PL) model 

 

           Equation 3                              

This model is similar to the 1PL model but adds the additional item parameter, ai. The 

item parameter ai is commonly referred to as the item discrimination parameter and is a 

measure of the slope of the ICC at its point of inflection. Conceptually, item 

discrimination is an indication of the strength of the relationship between the item 

response and ability (Yen & Fitzpatrick, 2006). The constant D is often set to a value of 

1.7 in order to make the model similar to the normal ogive function (Hambleton, 

Swaminathan, & Rogers, 1991). However, D's value is a matter of individual preference 

(Yen & Fitzpatrick, 2006) and is not necessary. 
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For the 1PL and 2PL models it is a tacit assumption that as examinee ability levels 

become very low (approaching negative infinity), the probability of a correct response 

approaches zero. For many assessments, however, this may not be appropriate. For 

example, on multiple-choice assessments a low-ability examinee may get an item correct 

simply by guessing. The 3PL model allows for this possibility through the inclusion of a 

guessing parameter (sometimes referred to as a pseudo-guessing parameter).  Therefore, 

extending the 2PL model results in the three-parameter logistic (3PL) model:  

2.1.4 The three parameter logistic model 

    𝑃 (𝑥𝑖 = 1⃒𝜃) = 𝐶𝑖 + (1 − 𝐶𝑖)
1

1+𝑒−𝐷𝑎𝑖(𝜃−𝑏𝑖)  
                                                  Equation4  

 

Where ai and bi are defined above and ci is the pseudo-guessing parameter. 

Conceptually, the guessing parameter is the probability of a very low ability examinee 

getting an item correct. Mathematically; the guessing parameter is the value of the lower 

asymptote of the ICC. 

 

2.2 IRT item parameter estimation methods 

As stated above, the purpose of this study was to find out whether item parameter 

estimates across different independent samples sizes of persons based on IRT 

dichotomous models are statistically comparable using real operational data. With this in 

mind, it was useful to understand the traditional ways in which item parameter estimates 

are calculated. Three of the most common item parameter estimation methods are 
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summarized below: joint maximum likelihood (JML), marginal maximum likelihood 

(MML), and Bayesian estimation. 

 

Although these are not the only item parameter estimation methods in use today, other 

methods tend to be less frequently used (e.g., nonparametric estimation) or specific to 

only a small number of models (e.g., conditional maximum likelihood (CML)). For a 

comprehensive review of the many IRT estimation methodologies refer to Baker and Kim 

(2004). 

 

2.2.1 Joint maximum likelihood method 

The solutions to the equations discussed in the previous section are complicated by the 

fact that in real testing situations parameters for both the items and the examinee abilities 

are unknown. JML addresses this problem by solving for both sets of parameters 

simultaneously. Let U be an N × n matrix consisting of dichotomously scored assessment 

results (1 = correct, 0 = incorrect) for an assessment that is n items long and administered 

to N examinees. Item responses are denoted Uij, where i indicates the item, i = 1, … , n, 

and j indicates the examinee, j = 1, … , N. Let θ be a vector of ability parameters (θ1, … , 

θj, … ,θN). Also, let Pi(θj) equal the probability of a person with ability θjgetting item i 

correct, and let Qi (θi) equal 1-Pi(θj). Therefore, the probability of the observed results 

matrix, U, given the abilities of the examinees, θ, can be described by the following 

likelihood function: 

 

𝐿 = 𝑃𝑟𝑜(𝑈│θ) = ∏ ∏ pi
uijn

i=1
N
j=1 (θi)Qi

1−uji
 (θj)                                               Equation 5    
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Taking the natural log of Equation 5 yields 

 

ln 𝐿 = ∑ ∑ [    𝑢𝑖𝑗 ln 𝑃𝑖((𝜃𝑗) + (1 − 𝑢𝑖𝑗) ln 𝑄𝑖(𝜃𝑗)]𝑁
𝑗=1

𝑁
𝑗=1

                                              Equation 6  

 

The likelihood equation for a given parameter of interest, λ, is obtained by setting the first 

derivative of Equation 6, with respect to λ, equal to zero: 

 

∆ ln 𝐿

∆𝜆
= ∑

𝑝𝑖(𝜃𝑗) −  𝐶𝑖 (𝜃𝑗)

𝑝𝑖 (𝜃𝑖)𝑄𝑖𝜃𝑗   ∆ 𝜆
[𝑢𝑖𝑗 − 𝑃𝑖(𝜃𝑗)] = 0                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

 

For the parameters of the 3PL model, θj, ai, bi, and ci, Equation 7 can be rewritten as 

∑
[𝑝𝑖(𝜃𝑗)− 𝐶𝑖]

1−𝑐1𝑝𝑖(𝜃𝑗)

𝑛
𝑗=1 [𝑢𝑖𝑗 − 𝑃𝑖(𝜃𝑗)] = 0                                                                       Equation 8 

For θj,
1

1−𝑐1
∑

[𝜃𝑗−𝑏𝑖][𝑝𝑖(𝜃𝑗)−𝐶𝑖]

𝑝𝑖(𝜃𝑗)

𝑁
𝑗=1 [𝑢𝑖𝑗 − 𝑃𝑖(𝜃𝑗)] = 0                                                          Equation 9   

For 𝑎𝑖,       

𝒂𝒊

𝟏 − 𝒄𝟏
∑

[𝒑𝒊(𝜽𝒋) − 𝑪𝒊]

𝒑𝒊(𝜽𝒋)

𝑵

𝒋=𝟏

[𝒖𝒊𝒋 − 𝑷𝒊(𝜽𝒋)] = 𝟎                                                     Equation 10    

 

For 𝑏𝑖,                                      
1

1−𝑐1
∑

1

𝑃𝑖(𝜃𝑗)

𝑁
㄰=1 [𝑢𝑖𝑗 − 𝑃𝑖(𝜃𝑗)] = 0               Equation 11   
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Equations 8-11 are solved using an iterative procedure with four steps:  

Step 1.   In the first step, person ability estimates are treated as fixed, set to an initial 

value, usually based on the examinee’s raw score, and estimates are calculated for the 

item parameters.   

Step 2.   In the second step, the newly estimated item parameters are treated as fixed, and 

estimates are calculated for examinee abilities. 

Step 3.  In the third step of the estimation process, the difficulty and ability scales are set. 

Step 4.   New estimates are calculated for the item parameters while treating the newly 

estimated and re-centered person ability estimates as fixed. 

Steps 2 through 4 are repeated until the change in parameter estimates between iterations 

becomes smaller than some fixed threshold known as a convergence criterion. 

The second estimation procedure that will be discussed, MML, separates the estimation 

of item parameters from that of examinee abilities. 

 

2.2.2 Marginal maximum likelihood 

In JML both the item and examinee parameters are treated as fixed effects. Thus, as the 

number of examinees increases so do the number of parameters that need to be estimated. 

MML takes a different approach in that it treats examinees as random effects. The 

following description of the estimation process is a summary of a more detailed 

derivation by Baker (1987). It is assumed that the θ parameters are a random sample from 

an overarching normal distribution (or some other empirical or user-defined distribution), 
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(𝜃). As before, assume that the assessment is n dichotomous items in length. Let s equal 

the number of distinct response patterns and let l be the label of a specific response 

pattern such that l = 1, 2, …, s. Therefore, the data matrix U is an s × n matrix consisting 

of one row for each of the s unique response vectors and one column for each of the n 

items. Therefore, the probability of an examinee with ability θ having the response vector 

ul is 

𝐿𝑙 = 𝑃𝑟𝑜𝑏(𝑢 = 𝑢𝑙) = ∫ 𝑃
∞

−∞

(𝑢 = 𝑢𝑙│𝜃)𝑔(𝜃).                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12 

 

The integral is approximated by summing the estimated value of the probability function 

at q quadrature points, where Xk (k = 1, …, q) is a specific quadrature point and A(Xk) is 

the quadrature weight of point Xk. Therefore, Equation 12 above can be approximated as 

follows 

𝐿𝑙 = ∑(𝑢 = 𝑢𝑙│𝑋𝑘)𝐴(𝑋𝐾)

𝑞

𝐾=1

                                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  13 

Equation 13 is used along with the expectation maximization (EM) algorithm (Bock & 

Aitkin, 1981) to obtain parameter estimates. In the first (E) step of the algorithm, initial 

item parameter estimates are used to obtain the expected number of examinees whose θ 

values correspond with the level of the quadrature point, 𝑁㄰̅̅ ̅̅ , and the expected number of 

correct responses to item i at that level, 𝑟𝑖𝑘̅̅̅̅  . These values are estimated using the 

following equations: 
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𝑁𝑘
̅̅̅̅ =

∑ 𝑟𝑙𝐿𝑙(𝑋𝐾)𝐴(𝑋𝐾)𝑠
𝑙=1

∑ 𝐿𝑙(𝑋𝐾)𝐴(𝑋𝐾)𝑞
𝑘=1

                                                              Equation 14 

 

𝑟𝑖𝑘̅̅̅̅ =
∑ 𝑟𝑖𝑢𝑙𝑖𝐿𝑙(𝑋𝐾)𝐴(𝑋𝐾)𝑠

𝑙=1

∑ 𝐿𝑙(𝑋𝐾)𝐴(𝑋𝐾)𝑞
𝑘=1

                                                         Equation15 

 

Where 𝑢𝑙𝑖 is the response to item i within pattern l, and Ll(Xk) is the relative density at θ 

= Xk. 

In the second (M) step of the algorithm,𝑁𝑘
̅̅̅̅ and𝑟𝑖𝑘̅̅̅̅ are treated as observed data and used to 

obtain improved estimates of item parameters using the following equations: 

 

∑ [𝑟𝑖𝑘̅̅̅̅ −𝑁𝑘
̅̅̅̅ 𝑃𝑖(𝑋𝑘)]𝑞

𝑘=1 = 0                                                                                                                         Equation 16 

 

∑ [𝑟𝑖𝑘̅̅̅̅ −𝑁𝑘
̅̅̅̅ 𝑃𝐽(𝑋𝑘)]𝑞

𝑘=1 𝑋𝑘 = 0                                                                                      Equation17 

2.2.3 Bayesian methods 

Generally speaking, IRT Bayesian methods are modifications of either JML or MML 

estimation where a priori assumptions are made about the distribution of item parameters. 

These assumptions can be applied either formally or informally. For example the 

LOGIST software program (Wingersky, Barton, & Lord, 1982) uses JML along with an 

informal method of specifying the item parameter distributions by placing upper and 

lower limits on the a and c parameters (Mislevy & Stocking, 1989). In formal 
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applications of Bayesian methods, a prior distribution is specified and multiplied by the 

likelihood function to produce a posterior distribution from which parameter estimates 

are obtained (Baker, 1987). The BILOG software program (Mislevy & Bock, 1997) is 

based on MML estimation, but by default uses Bayesian methods of estimation for 

certain item parameters. For the 3PL model, discrimination parameters are assumed to 

follow a log-normal distribution, the difficulty parameters are assumed to follow a 

normal distribution, and the guessing parameter is assumed to follow a beta distribution. 

The specific parameters describing these prior distributions (i.e., hyper parameters) are 

either specified by the user or estimated from the data (Mislevy & Stocking, 1989). 

2.3 Invariance property of item response theory 

Tenants of IRT put forward the property of invariance possessed by parameter estimates, 

advocating that such estimates, are obtained free of context and can be deemed truly 

characteristic of their object, by opposition to the context-bound estimates in CTT. 

“Invariance” often means that values of IRT item parameters ought to be identical for 

separate groups of examinees and through different measurement conditions (Rupp & 

Zumbo, 2006).What is invariance? Like most authors on the same topic, Hambleton et al. 

(1991) stress the importance of this concept as a distinctive asset of IRT: The importance 

of the property of invariance of item and ability parameters cannot be overstated. This 

property is the cornerstone of item response theory and makes possible such important 

applications as equating, item banking, investigation of item bias, and adaptive testing. 
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On the one hand, “invariance” means equality: “If invariance holds the parameters 

obtained should be identical” (Hambleton et al., 1991, p. 20; Rupp & Zumbo, 2006, p. 

64). On the other hand, a less stringent form of correspondence, e.g. linear equivalence, is 

admitted as a demonstration of invariance: two sets of parameters are said to be mutually 

“invariant” if they may be linearly transformed one into the other (Hambleton et al.. 

1991; Rupp & Zumbo, 2006; Stocking and Lord, 1983).This second meaning of 

“invariance”, also named “congruence”, is akin to the notion of (linear) correlation, to the 

point that values of Pearson’s correlation coefficients are taken as conclusive indications 

of invariance ( Fan, (1998), with a threshold value of r = 0.90 being proposed. 

2.4 Assumptions of IRT 

There are two assumptions underlying the model of IRT. These include 

Unidimensionality and local independence (Hambleton et al., 1991). These assumptions 

should be met in order to correctly fit data to a model. 

  

2.4.1 Unidimensionality assumption 

The assumption of unidimensionality affirms that only one type of ability can be 

measured by a group of test scores (Hambleton et al., 1991). This is not to say that other 

abilities cannot affect a test (i.e., levels of motivation and test anxiety), but that there 

should be a dominant factor which is sufficiently measured by the test (i.e., attachment; 

Hambleton et al., 1991). This assumption is sometimes difficult to meet because of 

“other” abilities, including cognitive and personality factors that can influence test 

performance (Hambleton & Swaminathan, 1985). In all, this assumption specifies the 
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importance of the evaluation through test scores of only one type of ability (Hambleton et 

al., 1991). Yet in reality, no scale in practice will ever be perfectly unidimensional 

(Harvey, 1999). As noted, the assumption of Unidimensionality is difficult to meet. Other 

factors including test motivation, cognitive skills, test anxiety, and test sophistication can 

influence the amount of abilities brought to a test. As such, these factors can influence the 

items and the predictability of the main ability in which the researcher may have wanted 

to study. For that reason, the construct must be well defined and validity evidence must 

be gathered to ensure that the test measures what it claims to (Hambleton, 1993). 

 

There are a few of approaches which demonstrate that the assumption of 

Unidimensionality has been met. The first approach is to select a model and then fit the 

items to the chosen model. The second approach is to define the domains in which the 

researcher is interested in and then choose a model to fit the test. Items are pre-selected 

and factor analysis (i.e., measuring the variance in unobservable constructs) can be 

conducted to make sure that the items fit the dominant ability (Hambleton & 

Swaminathan, 1985). This is also called confirmatory factor analysis (CFA). Conversely, 

the main idea behind Exploratory Factor Analysis (EFA) is to investigate possible 

factors. Since it would be difficult to perfectly meet the assumption of Unidimensionality, 

some researchers contend that the main factor must make up at least 20% of the variance 

(Scherbaum, 2006). Consequently, it is up to the researcher to determine which approach 

is better in terms of meeting the assumptions of Unidimensionality (e.g. Principal 

component Analysis (PCA), Exploratory Factor Analysis (EFA); (Hambleton & 

Swaminathan, 1985). 
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2.4.2 Local independence assumption 

The second assumption, local independence, states that when abilities influencing the test 

are held constant, responses to any item are statistically independent. This means that 

each item is independent of one another (Hambleton et al., 1991). When 

unidimensionality is met, local independence is usually met as well. Yet, local 

independence can still be met if unidimensionality has not been satisfied (Scherbaum, 

2006). As a result, the complete latent space, which describes the process of inferring 

from an observed test score, will contain the dominant ability (Hambleton & 

Swaminathan, 1985). 

Local independence specifies that scores on each test item do not present clues to the 

answers of any other test items. Since both assumptions are quite similar in terms of the 

latent space, factor analysis methods can also be employed for the assumption of local 

independence because once unidimensionality is met; local independence is assumed to 

be met (Hambleton, 1993). Unlike CTT, the data must fit the model chosen; which also 

infers local independence has been met (Dodeem, 2004). 

2.5 Sample size requirements for IRT models 

Some studies have shown that different IRT dichotomous models require samples of 

different sizes and the sample size should increase as the number of parameters to be 

estimated by the model increase. It has been argued that the 3pl model will require largest 

sample than the other two unidimensional models that is 2pl and 1pl models respectively 

(Lord, 1968; Hullin, Lissak & Drasgon, 1982; Talley, 2006). However in another study 
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smaller samples of 200 and 500 examinees were used in attempt to determine the effect 

of sample size on the standard errors of item and person parameter estimates and they 

proved to be sufficient, as adequate precision could be obtained using the sample of 200 

examinees (Hambleton & Cook, 1983). In all these studies recommendation have pointed 

at using as largest samples as possible and consistently pointing at the sample of 1000 

examinees as minimum for 3pl model however the majority of these studies used 

simulated data. 

 

2.6 Sample size versus estimation methods 

Several studies have been conducted to examine the effect of parameter estimation 

methods on the accuracy and stability of the estimates across samples of varied sizes. 

Some of the methods that have been compared include the CTT based point biserial 

correlations, Joint maximum likelihood (JML), Marginal Maximum likelihood (MML), 

Bayesian estimation methods, estimation heuristic procedures and the non-parametric 

estimation methods (Patsula & Gessoroli, 1995). The findings from these studies showed 

that some of the estimation procedures could not produce accurate and stable results with 

smaller samples but the differences become smaller as the sample sizes increased (Patsula 

& Gessoroli, 1995). 

 

When the joint maximum procedure was compared to estimation heuristic procedures 

(Urry, 1974) and CTT’s point biserial correlations methods across samples of; 250,500, 

750, 1000 and 2000 examinees, the sample estimates resulted in correlations very similar 
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to those obtained through Joint maximum likelihood estimation as the sample size 

increased but with smaller samples differences were significant with the joint maximum 

producing better estimates (Jensema, 1972; Ree ,1979). When Bayesian estimation 

procedure was compared to the methods above using samples of: 100, 200 and 400 

examinees on ability and difficulty parameter estimates the Bayesian procedure resulted 

into higher correlations and lower mean squared differences than did the other methods 

(Swaminathan & Gifford, 1986; Mislevy & Bock, 1984). In another study  the Joint 

maximum procedure was compared to non-parametric estimation methods across samples 

of sizes; 100,250,500 and 1000 examinees, the findings showed that the non-parametric 

estimation methods produced stable and accurate results on smaller samples than 

compared to the joint maximum procedure (Patsula & Gessoroli, 1995).In another study  

Maximum likelihood procedure out performed  joint maximum likelihood procedures on 

small samples however they matched on large samples (Yoes, 1995). 

2.7 Samples versus modified models 

Another way researchers have approached the problem of obtaining accurate parameter 

estimates with smaller sample sizes is to employ simplified/modified IRT unidimensional 

models. This section summarizes several studies in which researchers used 

simplified/modified unidimensional IRT models to analyze data. In 1983, Lord argued 

that when sample sizes are small, simple IRT models may provide more accurate results 

than more complex models, even when the more complex models theoretically should 

provide a better fit to the data. He evaluated this claim using item parameters derived 

from 1pl, 2pl and 3pl models using data from 3,000 sixth-grade students who took a 50-

item Metropolitan vocabulary test. He concluded that when sample sizes were less than 
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200 the 1PL model resulted in more accurate ability estimates than did the 2pl and 3pl 

model.  

 

In addition to using simplified models, researchers have examined the impact of using 

modified models. Barnes and Wise (1991) evaluated the efficacy of a 1PL model with a 

fixed nonzero lower asymptote. In their simulation study they examined this modified 

1PL model with c fixed at one of two levels, .20 and .25. These models were compared to 

the 1PL (c = .0) and 3PL models across three sample sizes (50, 100, and 200) and two 

test lengths (25 and 50 items). The simulated data were based on ability and difficulty 

parameters generated from a standard normal distribution in the range of -3 to 3, .5 <a < 

2.0, discrimination parameters ranged from .50 to 2.0, and guessing parameters that 

ranged from.10 to .30. Correlations, RMSEs, and bias of both the ability and the 

difficulty parameter estimates were used to evaluate results. Additionally, the RMSEs of 

the ICCs were examined. Five replications were carried out per cell. The 3PL model had 

the greatest problems with convergence. Ability estimates obtained using the modified 

1PL models tended to have higher correlations with the true parameters than did 

estimates obtained using the 1PL and 3PL models. The modified 1PL model with the 

lower asymptote fixed at .20 produced the most accurate recovery of the ICCs. The 

authors suggested that a modified 1PL model may be the best in small sample 

estimations. 
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Sireci (1992) also examined the utility of modified IRT models, but used real rather than 

simulated data. The data were obtained from four administrations of a national financial 

planning certification examination over four years. Sample sizes were 173, 149, 106, and 

159 examinees. The primary goal of the study was to evaluate the stability of item 

parameters for 13 test items that were common across all four test forms. Five IRT 

models were compared: the 1PL, 2PL, 3PL, modified 1PL (c =.20), and the modified 2PL 

(c =.20). The fixed value of the discrimination parameter was chosen to be the reciprocal 

of the number of answer choices (i.e., 4) minus .05. Item parameter estimates were 

obtained using MULTILOG. None of the models exhibited item parameter stability over 

the four data sets. Therefore, the author concluded that none of the evaluated models was 

appropriate for these small data sets. 

 

Parshall, Kromrey, and Chason (1996) compared regular and modified IRT models with 

respect to model-data fit and stability. Simulated data were generated from 3PL item 

parameters obtained from a 40-item ACT mathematics assessment. Examinee abilities 

were generated from a standard normal distribution. Six models were examined: 1PL, 

2PL, 3PL, modified 2PL (the discrimination parameter was restricted using a strong prior 

distribution), and two different modified 3PL models (the discrimination parameter was 

restricted using a strong prior distribution and one model had a common guessing 

parameter, which was estimated from the data, but constrained to be equal for all items). 

Four sample sizes were examined (100, 250, 500, and 1000). One hundred replications 

were conducted for each experimental condition. The BILOG software program was used 

for all calibrations. Model data fit was evaluated using item and person residuals. 
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Stability was evaluated using the standard deviations of the discrimination and difficulty 

parameters, and the ICCs across replications. The 3PL and modified 3PL (restricted a) 

models had the smallest item and person residuals for most sample sizes. However, these 

models had the least stable difficulty estimates across replications; the most stable 

estimates were obtained using the 1PL and modified 2PL models. The most stable 

discrimination estimates were obtained from the models that constrained the 

discrimination parameters (i.e., the 1PL and modified models). Setiadi (1997) compared a 

modified 1PL model (c = .20) with the 1PL model (estimated using MML and several 

Bayesian variations) and the 3PL model. The 3PL model was estimated using the non-

parametric TESTGRAF software program. The 1PL and modified 1PL models were 

estimated using BILOG. Item parameters for the simulation study were chosen from both 

real and hypothetical testing situations. Data were generated based on the 3PL model. 

The author examined two test lengths (30 and 60 items), three sample sizes (100, 200, 

and 500), two sets of item parameters (one taken from the Law School Aptitude Test and 

one created by the author with higher discrimination values) and two ability distributions 

(normal and uniform). One hundred replications were conducted for each condition. 

Results were evaluated using correlations, average errors, absolute bias, standard 

deviation of estimation errors, and RMSEs of item parameters. It was found that the 

modified 1PL model resulted in more accurate estimation of ability than did the other 

models when ability was normally distributed. For the uniformly distributed data, the 

modified 1PL model had the most accurate item parameter estimates.  
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Parshall, Kromrey, Chason, and Yi (1997) expanded on the earlier work of Parshall, 

Kromrey, and Chason (1996) by examining the efficacy of modified models in the 

presence of multidimensional data. As in the earlier study, six models were examined: 

1PL, 2PL, 3PL, modified 2PL (the discrimination parameter was restricted using a strong 

prior distribution), and two different modified 3PL models (the discrimination parameter 

was restricted using a strong prior distribution one model had a common guessing 

parameter, which was estimated from the data, but constrained to be equal for all items). 

Simulated item parameters for an 80-item, 6-dimensional test were generated from 

archival assessment data. Examinee abilities were generated using independent standard 

normal distributions for each dimension. Four sample sizes were examined (100, 250, 

500, and 1000), and one hundred replications were conducted for each experimental 

condition. Parameter estimates were obtained using BILOG. The authors used the same 

evaluative criteria as the earlier Parshall et al. study with the addition of the mean squared 

error of the expected response probabilities, the RMSE of the estimated number correct 

for each examinee, and the Spearman correlation of the estimated number correct score 

and the true number correct score. Results showed that the 2PL model provided the best 

fit to the data. However, with respect to estimation accuracy, the best results were 

obtained from the 3PL model and the modified 3PL model with restricted discrimination 

values. Clearly studies have shown that simplified/modified unidimensional models may 

be viable alternatives in situation where samples may be small. 

 

However, these models are less helpful in situations where a relatively small sample is 

used to obtain item parameter estimates that are then treated as known and used to build 
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and/or administer a test based on the 3PL model (e.g., a large-scale CAT). Additionally, 

simpler models may result in worse estimates when the data fit a more complex model. 

For example, Hambleton and Cook (1983) found that for data generated with the 3PL 

model, the 3PL model resulted in more accurate rank-ordering of examinees than did the 

2PL model. 

In contrast to the studies described above, Stone, Weissman, and Lane (2005) compared 

competing IRT models with respect to the consistency of student proficiency 

classifications. That is, rather than examining the accuracy of ability estimates or scale 

scores, they evaluated the accuracy of classifications based on these estimates. This study 

used real data from 13,621 11th-grade students from a 1999 state mathematics 

assessment. The test consisted of 60 multiple-choice items. 1PL and 3PL models were fit 

using the MULTILOG software program. Using the bookmark standard-setting 

procedure, the score scale was divided into four categories: Below Basic, Basic, 

Proficient, and Advanced. A standard-setting panel used an ordered item booklet with the 

items ordered based on the 1PL model. The four performance categories were identified 

using the difficulties of three items. The same three items were used to compare student 

performance classifications based on the competing IRT models. Based on the two 

competing IRT models, students were classified into different performance categories 

about 10% of the time. In the same paper, the authors discussed the results of a 

simulation study based on the same data. That is, the item parameters were the 3PL 

estimates from the real data and abilities were generated from a standard normal 

distribution. With the simulated data, comparisons could be made between estimated and 

true performance classifications. When the 1PL model misclassified students, it tended to 
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underestimate their ability. However, under the 3PL model misclassifications were more 

equally balanced between under- and overestimation. 

 

The studies described above provide comparisons of various competing IRT models. 

However, these models are less helpful in situations where a relatively small sample is 

used to obtain item parameter estimates that are then treated as known and used to build 

and/or administer a test based on the 3PL model (e.g., a large-scale CAT). Additionally, 

simpler models may result in worse estimates when the data fit a more complex model. 

For example, Hambleton and Cook (1983) found that for data generated with the 3PL 

model, the 3PL model resulted in more accurate rank-ordering of examinees than did the 

2PL model. 

2.8 Sample size versus optimal examinees 

Several researchers have attempted to improve item estimates (or obtain equally good 

estimates using smaller sample sizes) by choosing examinees in such a way as to get the 

most accurate item estimates possible. Wingersky and Lord (1984) investigated the effect 

that changing the number of items, number of examinees, and the distribution of 

examinee abilities had on the accuracy of item parameter estimates using real data from a 

regular administration of the Test of English as a Foreign Language (TOEFL). They used 

the 3PLmodel LOGIST for estimation (Wingersky et. al., 1982), and either a rectangular 

distribution with 1,500 examinees and 45 items or bell-shaped distributions of examinee 

abilities of either1,500 or 6,000 examinees and either 45 or 90 items. They found that the 

standard errors of item parameter estimates became smaller as sample size increased, but 
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were not substantially impacted by increasing the number of items. Conversely, they 

found that the standard errors of examinee ability estimates decreased as the number of 

items was increased, but were not substantially impacted by increasing the examinees. 

Additionally, they found that rectangular distributions of examinee abilities gave smaller 

standard errors for the item parameter estimates than did the bell-shaped distributions, 

indicating that better item parameter estimates could be obtained if examinees were 

selected systematically based on their ability. This recommendation was supported by a 

simulation study by Hambleton and Cook (1983), who found that the rank ordering of 

examinees was more accurate when examinee abilities were generated using a uniform 

distribution rather than a standard normal distribution. 

 

Stocking (1990) expanded on the work of Wingersky and Lord by evaluating which 

examinee abilities provide the most information for estimating item parameters for the 

1PLand 2PL models, as well as the 3PL model used in Wingersky and Lord (1984). 

Stocking showed that for the 3PL model: 

• Both low and high ability examinees provide little information for estimating item 

discrimination (as do those with abilities close to the optimal value for estimating item 

difficulty); the most informative examinees have abilities just above or just below the 

item difficulty. 

• Examinees provide the most information for estimating item difficulty when their 

ability is equal to the item’s difficulty parameter, but when the guessing parameter is 
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greater than zero the optimal ability level for estimating difficulty is greater than the 

difficulty parameter and depends on the item’s discrimination and guessing parameters. 

• Only examinees with very low abilities provide information for estimating guessing 

parameters. Thus, the examinee that provides the most information for estimating the 

difficulty parameter may be very different from the examinee who provides the most 

information for estimating the discrimination parameter, who also may be different from 

the examinee who is most useful for estimating the guessing parameter. Stocking 

concluded that selecting samples of examinees where ability was distributed either 

uniformly or bi-modally would serve as a good compromise for overall item parameter 

estimation accuracy. 

 

From these studies it is evident that there exist several factors affecting the stability and 

accuracy of parameter estimates apart from the sample size and length of a test, these 

factors include: the model used to generate the parameters, the ability distribution of the 

population and estimation procedures. However in examining these factors majority of 

the studies used simulated data sets to generate parameters estimates, the problem with 

simulated data is that model assumptions are strictly meet which is hardly the case with 

real data which most of the time is messier. 
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2.9 Adequate sample size  

Lord (1968) Lord calibrated the 3PL model on SAT data by an iterative technique that 

closely resembled Joint Maximum Likelihood estimation (JMLE), but did not include 

maximum likelihood estimation of the c parameter (it was estimated in an ad hoc non-

parametric manner). After much difficulty, he was able to obtain convergence. In 

describing his difficulties, Lord commented that the sampling errors of the estimated 

discrimination parameters “seem to be excessive unless n > 50, perhaps, and N > 1000,” 

where n is the number of items, and N is the number of examinees. 

 

Hulin, Lissak, and Drasgow (1982). They referenced Lord (1968) as recommending a 

sample size of at least 1000 examinees and investigated sample sizes 200, 500, 1000, and 

2000 with repeated simulation trials to get a better idea of the effect of sample size Like 

Lord (1968); they estimated parameters using a form of JMLE, as operationalized in the 

LOGIST computer program. In regard to recovery of the true item characteristic curves 

(ICC’s), they reported average RSME values of about 0.03, 0.04, 0.05, and 0.06, for 

sample sizes of 2000, 1000, 500, and 200, respectively, for a test length of 60 items. 

Hulin et al. did not make a specific recommendation with respect to sample size, but 

others have referenced them as recommending 1000 examinees and 60 items (Refer to 

Baker, 1992, p. 106). 

Unfortunately, the JMLE method has since been found to be inconsistent (not guaranteed 

to converge as sample size increases) (Little & Rubin, 1983). In spite of this, many 
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researchers have referenced both Lord (1968) and Hulin et al. (1982) as recommending a 

sample size of at least 1000 examinees for calibrating the 3PL model. 

Mislevy (1986) applied MMLE with a sample size 1000. But Mislevy’s paper was mostly 

theoretical in nature, and the estimation was conducted with only a single simulated 

dataset as a demonstration of the procedure without any significant conclusions about the 

adequacy of the estimation. Still, others have referenced Mislevy’s article as support for 

the use of 1000 examinees and have interpreted his results as showing that the item 

parameters were accurately recovered(e.g., Harwell & Janosky, 1991). 

 

Yen (1987), investigated MMLE (as implemented in BILOG) using a sample size of 

1000. She reported that the RMSE for the difficulty and ability parameter estimators were 

approximately 0.15 and 0.10, respectively, for a 40-item test of moderate difficulty 

(similarly good results for other realistic settings were also reported), thus giving 

significant support to the use of 1000 examinees as an adequate sample size. 

 

Gao and Chen (2005), looked at sample sizes of 100, 500, and 2000. For the case of 2000 

examinees and 60 items (the most realistic in comparison with typical standardized tests), 

the RMSE was about 0.11 for a parameter estimation, 0.12 for b parameter estimation, 

and 0 (to the nearest hundredth) for c parameter estimation, with correlations between 

estimated and true values being 0.97, 1.00, and 1.00, respectively. These results certainly 

give strong support that a sample size of 2000 is more than what is needed. 
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These studies can both be interpreted as lending support to the adequacy of using a 

sample size of 1000 in calibrating the 3PL model. The combined results of all the 3PL 

studies, with more emphasis given to the MMLE results of Yen (1987), Hanson and 

Beguin (2002), Gao and Chen (2005), and Kim (2006), all seem to indicate that the use of 

1000 examinees can be depended upon to give adequate parameter estimation results. 

However, majority of the studies both real and simulated concentrated on determining the 

adequate sample size for the 3pl model alone without due consideration of the other 

dichotomous models (1plm and 2plm). It has also been reported that most of these studies 

employed the JMLE method but Unfortunately, the JMLE method has since been found 

to be inconsistent (not guaranteed to converge as sample size increases) (Little & Rubin, 

1983). In spite of this, many researchers have referenced both Lord (1968) and Hulin et 

al. (1982) as recommending a sample size of at least 1000 examinees for calibrating the 

3PL model, Though the study had convergence problem which might have affected the 

accuracy of parameter estimation. It is therefore the lack of empirical research in the 

other dichotomous models concerning sample size that has compelled this study to take 

place. This study used Bayes prior information about item parameters to improve 

estimation convergence over MML and JML (e.g., Kim, 2007; Mislevy, 1986; 

Swaminathan & Gifford, 1986). 
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CHAPTER THREE 

RESEARCH DESIGN AND METHODOLOGY 

3.0 Chapter overview 

This discusses the design of the study, the sampling procedure, data generation, 

instrument, procedure and technique that were used to analyse the data and ethical 

consideration that guided the research process. 

 

3.1 Design of the study 

The study employed single factor experimental design the one factor variable that was 

manipulated was sample size whilst the item parameters estimates were dependent 

variables. The sample size independent variable had three levels; 250, 500 and 1000 

examinees. 

3.2 Sampling 

To examine the issues related to the effects of small sample sizes on IRT statistics, three 

examinee samples of varied sizes were implemented for the MSCE English language test 

data so that the behaviors of IRT statistics could be examined under different sample 

conditions as follows: 250,500 and 1000.This section also explains how the participating 

schools were selected from the total population of 40 schools. 
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3.2.1 Selection of schools 

The participants were candidates for 2013 Malawi School Certificate Education selected 

randomly from eight of the forty: Boarding secondary Schools, Day secondary schools 

and Community secondary schools within Zomba. These schools were selected using 

simple random sampling technique with each of the 40 schools having an equal inclusion 

probability of  1
5⁄ . 

 

3.2.2 Selection of examinees random samples 

Test scores were collected from 2000 examinees from these examinees three independent 

samples of varied sizes were created for the study as follows: 250, 500, and 1000. A 

sample Size of 1,000 is usually considered the minimum for use with the 3PL model. 

Therefore, sample size of 1000 examinees was included in order to serve as a benchmark 

for the smaller sample sizes. The sample sizes chosen here were similar to those used in 

other IRT simulation studies (Harwell, 1996). 

From the 8 school in which the instrument was administered a pool of 2000 examinees 

was collected in order to create the three samples, systematic sampling (SYS) was used, 

to create the three examinees samples from the pool of 2000 at regular intervals. With 

population N = 2000, and multiples samples of sizes 𝑛 1 = 250,  𝑛2 = 500 and 𝑛3= 1000, 

every kthunit is selected where the interval k was equal to N ni
⁄ ,  the random start, r, was 

a single random number between 1 and k, inclusively. The units selected were then: r, 

r+k, r+2k... r+ (n-1) k. with systematic sampling each unit had an inclusion probability, π, 

equal to n/N. 
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The researcher chose to use systematic random sampling because it offers the following 

advantages: 

Firstly, it is an alternative for simple random sampling (SRS) when there is no frame and 

it does not require auxiliary frame information. Secondly, it can result in a sample that is 

better dispersed, Babington, (1975). Thirdly, systematic procedure has a well-established 

theory and so estimates can be easily calculated.  

3.3 Data generating instruments 

The study used a MANEB 2009 English language MSCE paper for generating real data 

that was used in the study. The length of the test used was 60-items. This length was 

selected in order to provide a standard that is representative of assessments being used in 

the field. For example, Hambleton and Cook (1983) reported that "a test with 10 items is 

the shortest a test as is ever used in practice". Sixty items is generally believed to be 

adequate even for most 3PL model applications. Hulin, Lissak, and Drasgow (1982), used 

10 item tests to save as a yard stick for the smaller item tests. The test length chosen here 

is also similar to test length used in other IRT simulation studies (Harwell, Stone, Hsu, & 

Kirisci, 1996). 

3.4 Validity and reliability of the questionnaire`  

 The instrument was developed by Malawi Examinations Board MANEB and was piloted 

and used on a large population in 2009 therefore the instrument can be said to be 

psychometrically sound (reliable and valid). Assessment of Model assumptions for 

unidimensionality and local independence using CPA was conducted and results showed 
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that the mentioned requirements were met. This provided the evidence for construct 

validity which demands unidimensionality. 

3.5 Data generation 

The data was be generated by administering multiple choice test using 2009 Malawi 

Secondary Certificate Examination English Language Paper to 2000 form4 students from 

randomly selected eight secondary schools in Zomba, The participants were chosen on 

the understanding that they had covered the MSCE English syllabus since the data 

collection was done just a month before they sat for their 2013 Malawi Secondary 

Certificate of Education examinations. 

 

3.6 Data analysis 

 The software BILOG MG VERSION 7.0 was used to generate IRT item parameters 

estimates. One way ANOVA was used for testing hypothesis on the item difficulty and 

discrimination parameter estimates in SPSS whilst Resid-plots program was used to 

assess model data fit by graphically analysing the standardised residual distributions the 

IRT model assumptions of unidimensionality and local independence were assessed using 

Principal Component Analysis in SPSS. 

 

3.7 Ethical considerations 

Ethical issues and standards were critically considered in this research project. According 

to Strenbert and Carpnter (1999) the aim of ethical considerations in research is to do 

well to the subjects of the study and avoid any harm. Therefore to meet the said standards 

the researcher negotiated access to schools from, South East Education Division 



37 
 

Manager, Head teachers of all participating schools and the Malawi National 

Examination Board (MANEB) refer to appendices (E, F, and G), and the examinees were 

given understandable explanation of the purpose of the study and the procedure to be 

followed. Participation was voluntary and they were free to withdraw from the study at 

any time. 
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CHAPTER FOUR 

 

RESULTS OF THE STUDY 

4.0 Chapter overview 

This section presents the preliminary result and the main finding of the study. The 

preliminary results includes: Assessment of model assumptions of unidimensionality and 

local independence, the model data fit assessment which was conducted by analysing the 

standardised residual plots and distributions produced from 1pl and 2pl models and the 

Chi-square statistic. The section of the main findings contains the graphical and the 

statistical comparison of item and person parameter estimates 

 

4.1 Preliminary results of the study 

The purpose of this study was to find out whether item and person parameter estimates 

across independent samples of different sizes of examinees in IRT dichotomous models 

are statistically comparable using real data. This section presents results for the; 

Assessment model assumptions unidimensionality and Local independence, Generation 

of item parameters estimates in BILOG, Model- Data fit analysis with the data and item 

and person  parameters estimates done using Resid-Plot program and SPSS. 
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4.1.2 Model data fit analysis 

In this study, the data from three samples of real data was fitted to one, two and three 

parameter models .The samples were of different sizes: 250, 500 and 1000. The sample 

size was the independent variable while the item parameter estimates derived from these 

models were the dependent variable. 

According to Box, G.E.P. (1979)   A “model “ is something we use to approximate reality 

for the purpose of making predictions, explaining data, etc. Strictly speaking, no model 

will fit the data perfectly but the question is, “how much model-data misfit is too much?” 

 In trying to make choice of which Model to use in this study the researcher employed the 

following assessment model- data fit techniques: Evaluation of model assumptions, 

assessment of residuals and standardised residuals plots, and the chi-square model fit 

statistic and the comparison of observed and simulated distribution.  

 

4.1.3 Model assumptions of unidimensionality and local independence 

In this study, a scree plot generated from Principal Components Analysis (PCA), was 

used to evaluate the dominance of the first factor. The figures below represent the scree 

plot for data from the sample of 1000 examinees. The rule of thumb requires that the first 

factor accounts for 20% of the variability in the data. 

From the scree plot produced in the PCA from the sample of size 1000 it is evident that 

the first dominant factor exists in the data, this confirms the assumptions of 

unidimensionality and local independence. 
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Figure 2: Screeplot for 1000 sample size Data set 

4.1.5 Graphic analysis of model data fit standardised residuals 

Standardised residuals are the basis for the plot for each item, standardised residual 

distribution item fit plot, and score fit plot. It is calculated as follows:        

𝑆𝑅𝑗 =
(𝑶𝒋 − 𝑬𝒋)

√
𝑬𝒋(𝟏−𝑬𝒋)

𝑵𝒋

 

 

Where 𝑂𝑗is the observed proportion of correct answers for examinees in a score interval, 

𝐸𝑗is the expected (model-based) proportion of correct answers in the same score interval, 

𝑁𝑗  is the number of examinees in the same score interval. 

4.1.6 Frequency distribution for standardised residuals for real and simulated data 

The standardised residual frequency distribution is based on all SRs (intervals ×Items) in 

the test excluding those with intervals with zero frequencies.  
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 Figure 3: SR Distribution for 1000 sample size data set 1PL Model  

 

Figure 4: SR Distribution for 1000 sample size data set 2PL Model 
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Figure 5: SR Distribution for 250 sample 

size data set 1PL Model 

 

Figure 7: SR Distribution for 500 sample 

size data set 1PL Model 

 

Figure 6: SR Distribution for 250 sample 

size data set 2PL Model 

Figure 8: SR Distribution for 500 sample 

size data set 2PLModel 

 

The Figures display the real and simulated distribution for the Sample Size 1000,250 

AND 500from 1PL and 2PL models respectively. It is evident in both cases that both the 

real and simulated distribution are identical i.e., they all have a normal distribution in 

2PL models unlike the situation in the 1PL model.  

4.1.7 Standardised item residual plot 

The standardised residual in each score interval is shown on the plot. If there are no  

Examinees in an interval, the standardised residual is not shown in the display. 
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Figure 9: SRs for 1000 sample size data set 1P Model 

 

Figure 10: SRs for 1000 sample size data set 2P Model 

Only one item standardised residual plot for item one is presented for both 2PL and 1PL 

models rests of the plots are given in the appendix. It is evident from the graphs that most 

residuals are homoscedastic (having equal standard deviation) for each item and follow 

an approximately standard normal distribution across all items of the test. The 2PL model 

gives standardised residual deviations smaller range of (-1 to +1) compared for 1PL 

model range of (-1 to +2). Therefore the researcher concluded that the 2PL model fits the 

Data better than 1PL model

.  
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4.1.8 Chi-square statistics 

This statistic from is reported in the Fit STAT table. For each item, it is calculated as 

follows: 

𝒙𝟐 = ∑
𝑵𝒋(𝑶𝒊𝒋 − 𝑬𝒊𝒋)𝟐

𝑬𝒊𝒋(𝟏 − 𝑬𝒊𝒋)

𝑲

𝒋=𝟏

 

For the sample size 250, only 17% of the items were demonstrated misfit in both 1P and 

2P model with alpha set at 0.05. At the sample level of significance 40% of the items 

demonstrated misfit when sample size 500 was fitted to 1P model and 28% when the 

same sample was fitted to 2PL. Therefore with the chi-square statistic, 2P model is 12% 

better than 1pl model. 

 

4.1.9 Predicted score distribution 

As was the case with standardised residuals real –simulated data distributions, in 

predicated score distributions, the actual test score distribution was compared with the 

distribution of predicated test score. When they are close, it is said that the best fitting 

IRT model closely recovers or predicts the actual test score distribution for the examinees 

that were administered the test.  When they are not close, model fit can be questioned.  It 

is a judgment as to how close the distributions need to be to establish model fit.  

Interpretation is enhanced by comparing the fit for more than one model to provide a 

basis for interpreting the results.   
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Figure 11: Score cumulative distribution for 1000 sample size data set 1P Model 

 

Figure 12: Score cumulative distribution for 1000 sample size data set 2P Model 

In figures, 11 and 12  the  1PL and 2PL model respectively, the observed are closely 

fitting to the expected in the middle of the distribution however the test score distribution 

for 1PL model  the observed  distribution is slightly deviating expected distribution  at 

both ends. Hence, the conclusion that 2PL model fits the data better than the 1PL model. 
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4.1.9.1 Preliminary results summary 

In summary, after thorough assessment of unidimensionality and local independence of 

the data and analysis of the standardised residual plots and distributions, predicted score 

distribution and the Chi-square Fit statistic and other graphical item and test fit analysis 

included in the appendix. The researcher concluded that 2PL model fits the data better 

than the 1PL model. Therefore 2PL model were chosen for this study.  The 3PL model 

was left out due to convergence problem with the BILOG .MG3 IRT program. 

4.2.0 Main findings of the study 

The section reports item parameters generated across the three samples, the graphical and 

statistical comparisons results obtained from item and person parameter estimates across 

the three samples. The parameters were generated in BILOG .MG3 IRT program, using 

the programs default setting in all cases. 

 

4.2.1 Item parameter estimates 

Upon choosing 2PL as the best model among three, the researcher generated item 

difficulty, discrimination and examinees ability estimates using the three examinees’ 

samples. This section presents the item difficulty and discrimination parameters estimates 

which were compared to examine possible differences with respect to sample sizes 
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Table 1 

Item Difficulty Parameter Estimates for Sample Size 250 

  
item #  

 

item# 

 

item# 

 

item# 

 
1 -0.789 16 -0.013 31 -1.077 46 -3.183 

2 1.815 17 0.65 32 1.154 47 -3.017 

3 1.394 18 261.054 33 -0.42 48 0.071 

4 3.075 19 -1.296 34 0.991 49 -0.798 

5 -0.879 20 2.395 35 -0.284 50 1.075 

6 6.104 21 1.542 36 -0.407 51 0.278 

7 3.653 22 0.517 37 -0.307 52 -1.102 

8 0.271 23 -0.116 38 0.6 53 -0.607 

9 0.763 24 0.117 39 -0.014 54 -0.633 

10 0.169 25 0.82 40 -1.647 55 -1.179 

11 -2.193 26 0.316 41 2.659 56 1.263 

12 4.293 27 0.592 42 0.823 57 1.061 

13 -0.563 28 1.567 43 -1.506 58 0.022 

14 2.744 29 -0.584 44 0.593 59 -0.989 

15 1.419 30 0.026 45 -1.223 60 2.387 
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Table 2 

Item Difficulty Parameter Estimates for Sample 

Size 500 

   item #  

 

item# 

 

item# 

 

item# 

 1 -2.125 16 0.051 31 -0.963 46 -2.563 

2 2.334 17 0.218 32 0.731 47 -2.131 

3 0.552 18 3.556 33 -0.627 48 -0.095 

4 2.55 19 -1.207 34 1.603 49 0.813 

5 -0.819 20 3.899 35 -0.625 50 1.128 

6 5.87 21 2.297 36 -0.513 51 0.19 

7 3.595 22 1.205 37 -0.41 52 -1.246 

8 0.662 23 -0.061 38 0.826 53 -1.189 

9 0.532 24 0.25 39 0.02 54 -1.012 

10 0.669 25 0.906 40 -1.362 55 -1.019 

11 -2.614 26 0.266 41 3.069 56 1.414 

12 3.999 27 0.962 42 1.725 57 1.155 

13 -0.275 28 0.614 43 -0.684 58 0.074 

14 3.999 29 -0.373 44 0.65 59 -0.93 

15 1.342 30 0.086 45 -1.625 60 2.719 

        

 

Table 3 

Item Difficulty Parameter Estimates for Sample 

Size 500 

   item #  

 

item# 

 

item# 

 

item# 

 1 -2.104 16 0.52 31 -0.933 46 -2.639 

2 1.818 17 0.162 32 0.748 47 -3.203 

3 0.753 18 4.295 33 -0.63 48 0.394 

4 2.733 19 -1.206 34 1.358 49 2.212 

5 -0.658 20 6.014 35 -0.52 50 3.411 

6 4.666 21 3.355 36 -0.312 51 0.203 

7 7.027 22 1.395 37 -0.403 52 -1.175 

8 0.68 23 -0.077 38 1.282 53 -1.457 

9 0.535 24 0.17 39 0.166 54 -0.896 

10 0.357 25 0.927 40 -1.035 55 -1.184 

11 -2.833 26 0.308 41 3.613 56 1.178 

12 5.429 27 1.648 42 3.906 57 0.933 

13 -0.354 28 1.411 43 -0.825 58 0.012 

14 3.763 29 -0.895 44 0.726 59 -1.015 

15 1.771 30 0.293 45 -1.202 60 2.526 
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Table 4 

Item Discrimination Parameter Estimates for Sample 

250 

   item #  

 

item# 

 

item# 

 

item# 

 1 0.394 16 0.478 31 0.552 46 0.296 

2 0.475 17 0.201 32 0.338 47 0.243 

3 0.365 18 0.001 33 0.84 48 0.356 

4 0.478 19 0.706 34 0.16 49 0.113 

5 0.65 20 0.123 35 0.428 50 0.092 

6 0.193 21 0.187 36 0.771 51 0.19 

7 0.166 22 0.196 37 0.577 52 0.942 

8 0.233 23 0.534 38 0.135 53 0.269 

9 0.721 24 0.506 39 0.373 54 0.31 

10 0.557 25 0.62 40 0.162 55 0.299 

11 0.325 26 0.597 41 0.13 56 0.399 

12 0.21 27 0.12 42 0.121 57 0.425 

13 0.556 28 0.184 43 0.192 58 0.756 

14 0.264 29 0.208 44 0.804 59 0.392 

15 0.489 30 0.607 45 0.161 60 0.249 

 

Table 5 

Item Discrimination Parameter Estimates for  

Sample 500 

   item #  

 

item# 

 

item# 

 

item# 

 1 0.224 16 0.457 31 0.575 46 0.229 

2 0.328 17 0.342 32 0.411 47 0.215 

3 0.478 18 0.103 33 0.761 48 0.334 

4 0.425 19 0.682 34 0.129 49 0.083 

5 0.836 20 0.093 35 0.254 50 0.088 

6 0.182 21 0.166 36 0.602 51 0.151 

7 0.114 22 0.208 37 0.339 52 0.718 

8 0.13 23 0.539 38 0.133 53 0.146 

9 0.684 24 0.432 39 0.723 54 0.257 

10 0.501 25 0.826 40 0.168 55 0.25 

11 0.283 26 0.633 41 0.113 56 0.355 

12 0.187 27 0.084 42 0.114 57 0.426 

13 0.615 28 0.172 43 0.184 58 0.608 

14 0.165 29 0.168 44 0.724 59 0.397 

15 0.45 30 0.52 45 0.115 60 0.22 
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Table 6 

Item Discrimination Parameter Estimates for Sample Size 1000 

 item #  

 

item# 

 

item# 

 

item# 

 1 0.241 16 0.286 31 0.695 46 0.249 

2 0.42 17 0.286 32 0.399 47 0.147 

3 0.478 18 0.066 33 0.786 48 0.221 

4 0.465 19 0.568 34 0.105 49 0.053 

5 1.074 20 0.063 35 0.28 50 0.049 

6 0.223 21 0.118 36 0.728 51 0.118 

7 0.079 22 0.122 37 0.448 52 0.818 

8 0.09 23 0.432 38 0.078 53 0.122 

9 0.717 24 0.567 39 0.685 54 0.298 

10 0.489 25 0.75 40 0.139 55 0.203 

11 0.274 26 0.476 41 0.066 56 0.409 

12 0.148 27 0.052 42 0.064 57 0.497 

13 0.65 28 0.119 43 0.139 58 0.617 

14 0.163 29 0.134 44 0.623 59 0.358 

15 0.314 30 0.439 45 0.097 60 0.173 

 

 

        

4.2.2 Graphical comparison of item parameter estimate 

This section reports comparison of item parameter estimates across the three samples by 

the way of graphing item parameter vs. sample size. For every item, the parameter 

estimates are compared across the three samples (250, 500, and 1000) in order to examine 

the trend and behaviour of item parameters across the samples (i.e. either increasing or 

decreasing). 

 

4.2.3 Graphical assessment of item discrimination estimates 

 In the plots it is visible that the discrimination estimates are similar for each item across 

the samples. However in some cases the estimates are slightly larges in the 250 sample 
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than the other samples. In general there is an increasing trend as the sample size gets 

smaller. Therefore the researcher concluded that the item parameters across the samples 

were similar. 

 

Figure 13:  Item discrimination parameter estimates from 2plm 

 

Figure 14:  Item discrimination parameter estimates from 2plm 
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Figure 15:  Item discrimination parameter estimates from 2plm 

 

Figure 16:  Item discrimination parameter estimates from 2plm 

 

 

0
0.2
0.4
0.6
0.8

1

Discrimination  
Parameter

Discrimination parameter vs. Sample Size

sample 250 sample 500 sample 1000

0
0.2
0.4
0.6
0.8

1

Discrimination 
Parameter 

Discrimination Parameter vs. Sample size

sample 250 sample 500 sample 1000

0
0.2
0.4
0.6
0.8

1

Discrimination 
parameter

Discrimination parameter vs. Sample Size

sample 250 sample 500 sample 1000



53 
 

Figure 17:  Item discrimination parameter estimates from 2plm 

 

 

Figure 18:  Item discrimination parameter estimates from 2plm 

4.2.4 Graphical assessment of item difficulty estimates 

Presented in this section is the graphical analysis conducted to inspect the behavior of 

difficulty parameter estimates from 2PL model for each item across the samples. In the 

plots it is visible that the difficulty parameter estimates are behaving in a similar manner 

across the samples. That is to say when the estimates for an item is increasing or 

decreasing, negative or positive it does so in all the three samples in most of the items. 

Therefore the researcher concluded that the item estimates across the samples were 

similar. 
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Figure 19:  Item difficulty parameter estimates from 2plm 

 

 

Figure 20:  Item difficulty parameter estimates from 2plm 
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Figure 21:  Item difficulty parameter estimates from 2plm 

 

 

Figure 22:  Item difficulty parameter estimates from 2plm 
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Figure 23:  Item difficulty parameter estimates from 2plm 

 

 

Figure 24:  Item difficulty parameter estimates from 2plm 
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The section presents the F-test results of the one way ANOVA that were run on SPSS 

using the item and person parameters estimates, generated from examinee responses for 

the MANEB 2009 MSCE English language examination paper. Three independent 

-2

-1

0

1

2

3

4

item41 item42 item43 item44 item45 item46 item47 item48 item49 item50

Difficulty Parameter Estimate vs Sample Size

sample 250 sample 500 sample 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

item51 item52 item53 item54 item55 item56 item57 item58 item59 item60

Difficulty Parameter Estimate vs Sample Size

sample 250 sample 500 sample 1000



57 
 

samples of (250, 500, and 1000) were drawn and parameters were generated in 

BILOG.MG3.The aim of the F-test was to find out whether the parameter estimates 

across three samples were statistically different or not. 

 

4.3.1ANOVA results for 2plm item difficulty parameter 

One hundred and eighty item difficulty parameter estimates were generated in 2PL model 

across the three sample sizes (250, 500 and 750) examinees. The parameters were then 

run on SPSS using F-test of one way ANOVA to compare the group means of the three 

sample sizes on item difficulty parameter estimates in order to determine if sample size 

has an effect on item difficulty parameter estimation. The tables 7 and 8 below present 

the descriptive statistics and the results of the F- test of one way ANOVA for the item  

 Difficulty parameter estimates. 

 

 

Table 7:Descriptives  for difficulty Parameter estimates 

Sample

s 

N Mean Std. 

Deviation 

Std. Error 

250 

500 

1000 

Total 

60 

60 

60 

180 

4.724117 

.534383 

.785700 

2.014733 

33.6929972 

1.7537535 

2.1372121 

19.5038149 

4.3497472 

.2264086 

.2759129 

1.4537285 
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Table 7 provides familiar descriptive statistics “means and standard deviations” for the 

three independent sample size groups on of the dependent variable (item difficulty 

parameter estimates) for this analysis. The mean and standard deviation for the item 

difficulty parameter is higher for the small sample size of 250 examinees but this may be 

due to the effect of few outliers in the data. Therefore we cannot make solid conclusions 

based on descriptive statistics due to the pulling effect of this statistic. 

 

The main ANOVA summary table is divided into between group effects (effects due to 

the experiment) and within group effects (this is the unsystematic variation in the 

data).The between-group is the overall experimental effect. In this row we are told the 

sums of squares for the model (SSM =662.563). The sum of squares and mean squares 

represent the experimental effect. The row labeled within group gives details of the 

unsystematic variation within the data (the variation due to natural individual differences 

in the discrimination parameter estimates). The table tells us how much unsystematic 

variation exists (the residual sum of squares, SSR). It then gives the average amount of 

unsystematic variation, the mean squares (MSR). The test of whether the group means 

are the same is represented by the F-ratio for the combined between-group effect. The 

 

Table 8: ANOVA Statistics for Item Difficulty Parameter estimate  

Sources Sum of 

Squares 

df Mean Square F Sig. 

Between Groups 662.563 2 331.282 .870 .421 

Within Groups 67428.822 177 380.954   

Total 68091.385 179    
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value of this ratio is 0.870. Finally, SPSS tells us whether this value is likely to have 

happened by chance. The final column labeled sig. indicates how likely it is that an F-

ratio of that size would have occurred by chance. In this case, there is a probability of 0. 

412. An F-ratio of this size would have occurred by chance (that’s only a 41.2% chance!). 

Social scientists use a cut of point of 0.05 (5%) as the criterion for statistical significance. 

Hence, because the observed significance value exceeds 0.05 we can say that the three 

independent samples of examinees (250, 500 and 1000) were not significantly different 

on Item difficulty parameter estimates. With, F (2,177) =0.870, sig=.412. 

 

4.3.2 ANOVA results for item discrimination parameter estimates 

One hundred and eighty discrimination parameter estimates were generated in 2pl model 

across the three sample sizes (250, 500 and 750) examinees. The parameters were then 

run on SPSS using F-test of one way ANOVA TO compare the group means of the three 

sample sizes on item discrimination parameter estimates in order to determine if sample 

size has an effect on discrimination parameter estimation. The tables 9 and 10 present the 

descriptive statistics and the results of the F- test of one way ANOVA for the 

discrimination parameter estimates. 
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Table 9: Descriptive Statistics for Item discrimination estimates 

 

 

 

 

 

Table 9 provides familiar descriptive statistics “means and standard deviations” for the 

three  independent sample size groups on of the  dependent variable (item discrimination 

parameter estimates ) for this analysis. The mean for the item discrimination parameter is 

slightly decreasing as the sample size increases from 250 examinees to 1000 examinees. 

However, we cannot make solid conclusions based on mean statistic due to the pulling 

effect of this statistic. 

Table 10: ANOVA Statistics for Item discrimination estimates  

Sources Sum of 

Squares 

df Mean Square F Sig. 

Between Groups 0.051 2 0.026 0.484 0. 617 

Within Groups 9.409 177 0.053   

Total 9.460 179    

 

  

The main ANOVA summary table is divided into between group effects (effects due to 

the experiment) and within group effects (this is the unsystematic variation in the 

data).The between-group is the overall experimental effect. In this row we are told the 

Samples N Mean Std. Deviation Std. Error 

250 

500 

1000 

Total  

60 

60 

60 

180 

0.373650 

0.347483 

0.332783 

0.351306 

0.2213559 

0.2217569 

0.2475897 

0.2298950 

0.0285769 

0.0286287 

0.0319637 

0.0171354 
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sums of squares for the model (SSM =0.051). The sum of squares and mean squares 

represent the experimental effect. The row labeled within group gives details of the 

unsystematic variation within the data (the variation due to natural individual differences 

in the discrimination parameter estimates). The table tells us how much unsystematic 

variation exists (the residual sum of squares, SSR). It then gives the average amount of 

unsystematic variation; the mean squares (MSR). The test of whether the group means 

are the same is represented by the F-ratio for the combined between-group effect. The 

value of this ratio is 0.484. Finally, SPSS tells us whether this value is likely to have 

happened by chance. The final column labeled sig. indicates how likely it is that an F-

ratio of that size would have occurred by chance. In this case, there is a probability of 0. 

617. An F-ratio of this size would have occurred by chance (that’s only a 6.17% chance!). 

Social scientists use a cut-off point of 0.05 (5%) as the criterion for statistical 

significance. Hence, because the observed significance value exceeds 0.05 we can say 

that the three independent samples of examinees (250, 500 and 1000) were not 

significantly different on Item discrimination parameter estimates. With, F (2,177) 

=0.484, sig=.617. 

 

4.3.3 ANOVA results for person ability parameter estimates 

One thousand seven hundred and fifty examinees’ ability parameter estimates were 

generated in 2pl model across the three sample sizes (250,500 and 750) examinees. The 

parameters were then run on SPSS using F-test of one way ANOVA TO compare the 

group means of the three sample sizes on examinee’s ability parameter estimates in order 

to determine if sample size has an effect on ability parameter estimation. The tables 11 
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and 12 present the descriptive statistics and the results of the F- test of one way ANOVA 

for the ability parameter estimates. 

Table 11: Descriptive Statistics for examinee Parameter estimates 

 

 

 

 

 

 

 

The summary table of descriptive statistics shows that the means and standard deviations 

for the person ability parameter estimates across the three samples are all most the same. 

However, the mean and standard deviations for the smallest sample of 250 examinees are 

slight higher than those of the larger samples of 500 and 1000 examinees respectively. 

Table 12: ANOVA Statistics for examinee ability Parameter estimates 

Samples N Mean Std. Deviation 

250 

500 

1000 

Total  

250 

500 

1000 

1750 

.000002 

.000000 

-.000001 

-.000001 

.9407372 

.9353662 

.9360689 

.9360023 

SOURCE SOME OF 

SQUARES 

Df Mean  

Square 

F Sig                

Between Groups 

.000 2 .000 .000 1.000 

Within Groups 

1533.175 1748 .877 

  

Total 

1533.175 1750  
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The main ANOVA summary table is divided into between group effects (effects due to 

the experiment) and within group effects (this is the unsystematic variation in the data). 

The between-group is the overall experimental effect. In this row we are told the sums of 

squares for the model (SSM = 0.000). The sum of squares and mean squares represent the 

experimental effect. The row labeled within group gives details of the unsystematic 

variation within the data (the variation due to natural individual differences in the ability 

parameter estimates). The table tells us how much unsystematic variation exists (the 

residual sum of squares, SSR). It then gives the average amount of unsystematic 

variation; the mean squares (MSR). The test of whether the group means are the same is 

represented by the F-ratio for the combined between-group effect. The value of this ratio 

is 0.000. Finally, SPSS tells us whether this value is likely to have happened by chance. 

The final column labeled sig. Indicates how likely it is that an F-ratio of that size would 

have occurred by chance. In this case, there is a probability of 1.000. An F-ratio of this 

size would have occurred by chance (that’s a 100% chance!). Social scientists use a cut of 

point of 0.05 (5%) as the criterion for statistical significance. Hence, because the 

observed significance value exceeds 0.05 we can say that the three independent samples 

of examinees (250, 500 and 1000) were not significantly different on examinees ’ability 

parameter estimates. With, F (2,177) =0.000, sig=.1.000. 

  

4.4 Summary for the results of the study 

In summary the model data fit in the 1PL model was poor as compared to 2PL model. 

The data fit was relatively good though not to the same extent as the fit from most of 
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simulation studies. The study therefore proceeded to examine parameters generated using 

2PLM across the independent samples of sizes: 250, 500, and 1000. The results from 

comparing the corresponding item and examinees ’parameters estimates within the model 

showed that the parameters were statistically equivalent across the three samples. 
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CHAPTER FIVE 

 

DISCUSSION, CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS 

5.0 Chapter over view 

This final section of the thesis will briefly review and summarise the main results found 

in chapter 4. This chapter describes the results of the study in four sections. The first 

section discusses the findings of the study from the research questions. The next section 

compares the results of this study to findings from previous research. The third section 

discusses implications of the findings for practice and policy and discusses the limitations 

of the study. Final part presents recommendations and conclusions.  

5.1 Discussion 

The first question that the study sought to address was “Which IRT model fits the data” 

this question intended to help the researcher in selecting the appropriate model for 

generating the item and person parameter estimates. Through this preliminary analysis 

the 2PL model was chosen because it fitted the data well than the other models. 

 

The second research question compared the item difficulty estimates from the three 

samples of varied sizes of: 250, 500 and 1000. The results showed that the item difficulty 

parameter estimates were not statistically different across the three samples. This led to 
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accepting the null hypothesis that “Differences in Groups with varied sample sizes have 

no statistically significant influence on the item difficulty parameter estimates generated 

using 2PL model. Theoretically this finding supports the principle of item invariance 

which is the cornerstone of the IRT framework which says that item parameters across 

different samples of examinees must be equivalent. 

 

The third research question compared the item discrimination parameter estimates from 

the three samples with varied sizes of: 250, 500 and 1000. The results showed that the 

item discrimination parameter estimates were not statistically different across these 

samples and this led us to accepting the null hypothesis that “Differences in sample sizes 

have no statistically significant influence on the item difficulty parameter estimates “a” 

based 2PL IRT model. This affirms the theory that, IRT models produce item statistics 

independent of examinee samples and person statistics independent of the particular set 

of items administered. This invariance property of item and person statistics of IRT has 

been illustrated theoretically by (Hambleton & Swaminathan, 1985; Hambleton, 

Swaminathan, & Rogers, 1991) and has been widely accepted within the measurement 

community. 

 

The last research question examined the differences in person ability parameter estimates 

from 2P model based on three samples of varied sizes of: 250, 500 and 1000.the results 

showed that the person ability parameter estimates were not statistically different across 

these sample sizes therefore this lead us to accepting the null hypothesis that “Differences 

in sample sizes have no statistically significant influence on the person ability parameter 
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estimates (𝜃) based on 2Pl IRT model. This affirms the theory that, IRT models produce 

item statistics independent of examinee samples and person statistics independent of the 

particular set of items administered. This invariance property of item and person statistics 

of IRT has been illustrated theoretically (Hambleton & Swaminathan, 1985; Hambleton, 

Swaminathan, & Rogers, 1991) and has been widely accepted within the measurement 

community. 

5.2 Relationship of the findings to prior research 

The past research studies though most of them used simulated data and employed Root 

Mean Squared Errors (RMSEs) as evaluative criteria for assessing the influence of small 

samples on item parameter estimates are similar to the findings of this study. 

 

In an analysis of the effect of sample size on linear equating, Ree and Jensen (1983) 

examined several combinations of calibration and equating sample sizes. They suggested 

a minimum sample size of 500.Hambleton and Cook (1983) simulated tests of 10, 20, and 

80 items with sample sizes of 50, 200, and 1000 in order to determine the effect of 

sample size on the standard errors of ability estimation curves. Ability scores were drawn 

from a standard normal distribution, and item parameters were estimated using heuristic 

estimation software (Urry, 1974). They concluded that adequate precision could be 

obtained near the center of the ability continuum under most testing conditions with a 

sample size of 200 which is comparable to the 250 sample size that was used in this 

study. 
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Lim and Drasgow (1990) examined the parameter recovery capabilities of BILOG for 

samples of 250 examinees on a 20-item test. They reported that Bayes modal estimates 

showed less estimation error when sample size (n) = 250. Michael R. Harwell and Janine 

E. Janosky (1991) Effects of Small Datasets and Varying Prior Variances on Item 

Parameter and found that once samples size exceeds 250, the estimation error tends to be 

reasonable. 

These findings from previous studies have been supported by the findings of this present 

study which is also pointing at a sample of size 250 examinees as being reasonable 

sample size to be used in generating stable item and person parameter estimates. 

5.3 Implications for practice and policy 

 When we give a test, it is usually because we have to make a decision and we want the 

results of the testing situation to help us make that decision. We have to interpret those 

results, and to make the case that our interpretations are valid for that situation. Validity, 

therefore, is an argument that we make about our assumptions, based on test scores. We 

must make the case that the instrument we use does, in fact, measure the psychological 

trait we hope to measure. Validity is, according to the Standards for Educational and 

Psychological Testing, “the most fundamental consideration in developing and evaluating 

tests” (cited in Hogan & Agnello, 2004). 

 

 One kind of support for the validity of the interpretation is that the test measures the 

psychological trait consistently. This is known as the reliability of the test. Reliability, 

i.e., a measure of the consistency of the application of an instrument to a particular 
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population at a particular time, is a necessary condition for validity. A reliable test may or 

may not be valid, but an unreliable test can never be valid. This means that a test cannot 

be more valid than it is reliable, i.e., reliability is the upper limit of validity. It is 

important to remember that any instrument, i.e., the MANEB, SLEP test or TOEFL, does 

not have "reliability." An instrument that demonstrates high reliability in one situation 

may show low reliability in another. Reliability resides in the interaction between a 

particular task and a particular population of test-takers. This study has examined the 

item parameter invariance through the interaction of instrument with the sample size. The 

findings of the study showed that item parameters from the sample of size 250 are 

statistically equivalent as those produced from samples of sizes 500 or 1000.  

 

These results will help to inform policy, in future, examination boards and other stake 

holders may reduce pretesting cost for smaller sample of 250 examinees will be 

sufficient. These findings will also improve test security by reducing item exposure since 

fewer examinees need to see each item to estimate the item parameters accurately. 

 

In practice this study contributes in determining and establishing the minimum sample 

size which can be employed when generating item parameter estimates in IRT 1P and 2P 

models.  

 

 In the academic circles the findings of this research has increase the empirical 

knowledge on the influence of sample size on item parameter estimates based on IRT 1P 

and 2P theoretical framework. 
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5.4 Limitations of the current study 

The first shortcoming of the investigation is the limited item pool used in the study. 

Although the examinee pool is quite adequate in the sense that a variety of different 

samples can be drawn from it, the same cannot be said about the item pool. Ideally, the 

test item pool should be larger and more diverse in terms of item characteristics 

(including both homogenous and heterogeneous items) so that items can be sampled from 

the pool to study the behaviors of IRT item statistics under different conditions of item 

characteristics. Future studies may benefit from using several different testing databases. 

 

In this study, unlike in most of simulation situations where most of the items, by design, 

fit the 3PL model well, the real data was messier, had a very poor fit to the 3PL model, 

hence the researcher could not proceed to work with 3P model. Additionally, this study 

may not generalise to other IRT models 

5.5 Recommendations 

This study employed ANOVAs to assess the equivalence of item parameter estimates 

across varied sample sizes, it may be important to examine these samples using other 

evaluative criteria like amount of Item differential item function, item Bias and Root 

MEAN Squared Errors. 

While this study examined the effect of sample sizes on statistical equivalence item 

parameter estimates, it is also important to understand its effect on ability parameter 

estimates and standard and measurement errors. 
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Appendix F.  Letter to Executive Director (MANEB) 

                                                                                   Tamandani A Chikoko  

         8th July, 2013  

tamandanichikoko156@gmail.com 

  Cell: 0993414750 

 

 

The Executive Director  

Malawi Nation Examination Board (MANEB) 

P.O.BOX191, Zomba 

 

Dear Sir 

REQUESTING FOR PERMISSION TO USE MANEB 2009 MSCE ENGLISH 

PAPER1 FOR ACADEMIC RESEARCH 

I write to request your permission to use the testing instrument mention above for the 

purpose of research study that will be conducted in schools within Zomba City. 

I am a student at Chancellor College undergoing a Master of Education in Testing, 

Measurement and Evaluation program. This study is a partial fulfillment towards the   

award of my degree. 

The study would be about examining the possibilities of estimating item parameters with 

small sample sizes in item response theory. The results of the study are expected to: 

reduce pretesting costs, because smaller samples would be sufficient and improve test 

security by reducing item exposure (fewer examinees need to see each item to estimate 

the item parameters accurately)  

Looking forward to your favorable consideration. 

Yours Faithfully  

Tamandani A Chikoko (MR.) 

 

 

mailto:tamandanichikoko156@gmail.com
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Appendix E.  Letter to the South East Education Division Manager 

                                                                                    Tamandani A Chikoko  

         8th July, 2013  

tamandanichikoko156@gmail.com 

Cell: 0993414750 

 

The Executive Director  

Education Division Manager (SEED) 

P.O.BOX148, Zomba 

 

Dear Sir 

REQUESTING FOR PERMISSION TO ADMINISTER MANEB 2009 MSCE 

ENGLISH PAPER1 FOR ACADEMIC RESEARCH 

I write to request your permission to administer the testing instrument mentioned above 

to some of your schools in Zomba for purpose of academic research. 

I am a student at Chancellor College undergoing a Master of Education in Testing, 

Measurement and Evaluation program. This study is a partial fulfillment towards the   

award of my degree. 

The study would be about examining the possibilities of estimating item parameters with 

small sample sizes in item response theory. The results of the study are expected to: 

reduce pretesting costs, because smaller samples would be sufficient and improve test 

security by reducing item exposure (fewer examinees need to see each item to estimate 

the item parameters accurately)  

Looking forward to your favorable response  

Yours Faithfully  

Tamandani A Chikoko (MR.) 

 

mailto:tamandanichikoko156@gmail.com
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